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Abstract—This study is motivated by the on-board fault detection
of Gas Turbine Engines (GTEs) where the computation resources are
limited and the disturbance is assumed to be band-limited. A Fast Fourier
Transformation (FFT)-based disturbance frequency estimation approach
is proposed and performance indices are improved by integrating such
frequency information. Furthermore, in the left eigenvector assignment,
both eigenvalues and free parameters are optimized. As illustrated in
the application to the actuator fault detection of a GTE, significant
improvements are achieved compared to the existing methods. By
combining the frequency estimation and eigenvalue optimization, the
main contribution of the paper is the reduction of the computation
complexity and the avoidance of the local optimal solution due to fixed
eigenvalues.

Index Terms—Fault detection, fast fourier transformation, gas turbine
engine, robust observer design

I. INTRODUCTION

The design of RFDO (Robust Fault Detection Observer) has
received much attention in recent years. (see, e.g., [1], [2], [3], [4],
[5], [6]). In the optimal observer design that aims at enhancing the
robustness to disturbances and the sensitivity to faults, the basic
concept is to measure the robustness and sensitivity by a suitable
performance index and optimise it. With the aid of well-established
robust control theories, a lot of performance indices have been
proposed, such as H2 [3], H2 in time domain [7], H∞ [5], H−
[8], [9], and mixed H−/H∞ [8].

One of them, eigenvalue assignment [10], [11], [12] shows a lot
of advantages when applying to observer designs. As a parametric
pole assignment method [11], [13], it assigns the closed-loop poles
to desired places arbitrarily [10]. It is well known that the solution
is not unique which enables the optimal fault detection observer
design. Moreover, through parameterizing the performance index, the
eigenvalue assignment based RFDO design turns into an optimization
problem [1], [10], [11].

In the application to on-board condition monitoring of GTEs [14],
because of the limited computation resources, a fast RFDO design
is required. However, the traditional H2(H∞)-norm based RFDO
design demands relatively more computation due to the fact that
an integral or griding over the whole frequency range are required.
Moreover, the H∞ observer is designed to minimize the peaks of
transfer functions at some frequency wp for the worst-case. Note
that wp is determined by the transfer functions (system matrices),
not by disturbances. Since it is more likely that the disturbance
frequency wd �= wp, the H∞ RFDO that gives the basic guarantee of
the performance at the worst-case may be too conservative in some
application cases.
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In many industrial applications, the disturbance can be treated as
a semi-stochastic process with main contents on some frequency wd,
instead of a Gaussian noise uniformly distributing over the whole
frequency range. This disturbance assumption makes sense in a lot of
practical applications, such as GTEs. By optimizing the performance
indices at wd, instead of at the worst case (which requires H∞
optimization over the whole frequency range), the resulting observer
should have a better disturbance attenuation performance.

Furthermore, in controller designs [11], [13], the pole positions
have been pre-specified according to control performance specifica-
tions. In observer designs, however, there is no an explicit way to
determine the best positions of poles. Since the positions of eigen-
values affect the observer performance greatly, keeping eigenvalues
fixed and optimizing free parameters alone may not give a global
optimal solution.

Keeping these two points above in mind and assuming the band-
limited disturbance is unknown, we proposed an approach to es-
timate the disturbance frequency via spectra analysis of residuals.
Such frequency information is then integrated to form an improved
frequency-dependent performance index for reducing the computation
costs and enhancing disturbance attenuation. In the optimization
procedure, both pole positions and free parameters are optimized
simultaneously. As illustrated in the simulation of a gas turbine
engine fault detection, a significant improvement of disturbance
attenuation is achieved compared with the existing methods. The main
contribution of this paper is to combine the frequency estimation
and eigenvalue optimization in eigenvalue assignment for RFDO
design. The benefits of this method are two fold: the reduction of
the computation costs in RFDO design, and the avoidance of the
local optimal solution due to fixed eigenvalues.

II. PROBLEM FORMULATION

Consider a disturbance-corrupted system with faults in the discrete
state space form:{

x(k + 1) = Ax(k) + Bu(k) + Bff(k) + Bdd(k)
y(k) = Cx(k) + Du(k) + Dff(k) + Ddd(k)

(1)

where x ∈ R
n, u ∈ R

m, y ∈ R
p. f(k) ∈ R

f is a general fault
vector, Bf , Df are known as fault distribution matrices, and Bd,
Dd are termed disturbance distribution matrices. d(k) ∈ R

d is a
general disturbance vector due to exogenous signals, linearization
or parameter uncertainties. For instance, the disturbance caused by
model uncertainties can be presented as:

d(k) =
(
ΔAx(k)+ΔBu(k)
ΔCx(k)+ΔDu(k)

)
(2)

In this paper, d(k) is assumed as a quasi-stationary process with both
deterministic and stochastic components:

d(k) = s(k) + h(k) ∗ n(k) (3)

where s(k) is a band-limited deterministic disturbance vector, n(k)
a white noise, h(k) the impulse response of a band-pass filter having
the similar band as s(k), and ∗ denotes the convolution product. Thus,
h(k) ∗ n(k) is a band-limited stationary stochastic signal (colored
noise). It can be proved that d(k) is quasi-stationary and band-limited.
Without loss of generality, it is assumed that the pair {A, C} is
observable.

For system (1), the robust fault detection observer under consider-
ation can be constructed by{

x̂(k + 1) = Ax̂(k) + Bu(k) + Kr(k)
ŷ(k) = Cx̂(k) + Du(k)
r(k) = y(k) − ŷ(k)

(4)
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where r ∈ R
p is the so-called residual which is evaluated to

determine the system is faulty or not.
Define the state estimation error e(k) = x(k)−x̂(k), the estimation

error and residual dynamics are governed by{
e(k + 1) = (A − KC)e(k) + (Bf − KDf )f(k)

+(Bd − KDd)d(k)
r(k) = Ce(k) + Df f(k) + Ddd(k)

(5)

The z-transformation of (5) gives the Transfer Function Matrices
(TFMs) relating r(z) to f(z), d(z):

r(z) = Gf (z)f(z) + Gd(z)d(z) (6)

where{
Gf (z) = C(zI − A + KC)−1(Bf − KDf ) + Df

Gd(z) = C(zI − A + KC)−1(Bd − KDd) + Dd
(7)

It can be seen from (6) that, due to the existences of disturbances,
the residual r(z) is not zero, even if no fault occurs. The effect of
disturbances works as a source of false and missed alarms. In order
to avoid false alarms, the concept of RFDO was proposed in a lot of
literatures aiming to reduce the effects of disturbances and to enhance
the effects of faults.

The RFDO problem to be solved in this paper turns into a
constrained optimization problem:

RFDO Design Given a system (1) subject to constant/slow faults
and unknown disturbances d(k) limited on some frequency ωd, find,
if possible, a real coefficient feedback gain matrix K ∈ R

n×p, such
that the following two criteria are satisfied:

• Stability Criterion: The eigenvalues of A − KC in equation
(5) lie within the unit circle in the z-plane.

• Robustness/Sensitivity Criterion: ‖ Gd(z) ‖ should be
minimized and ‖ Gf (z) ‖ should be maximized, where ‖ · ‖
denotes some kind of TFMs norm.

III. DISTURBANCE ATTENUATION DESIGN

Motivated by the work of Gao and Wang [15], the left eigenvector
assignment is employed in this paper. The objectives are to define
a more appropriate performance index by taking into account the
frequency properties of disturbances and then minimize it by selecting
an optimal matrix K ∈ R

n×p.
In the followings, the gain matrix K in (4) and the TFMs (7)

are first parameterized by eigenvalues {λi} and free parameters
{qi}. Then the evaluation of robustness/sensitivity index ‖Gd(z)‖

‖Gf (z)‖ is
discussed. A disturbance frequency estimation method is proposed
to reduce the computation complexity and improve the performance
index. Finally, the optimization procedure is slightly modified so that
not only the free parameters, but also the eigenvalues are optimized.
The following assumption is used throughout:

Assumption A1 The poles λi (i = 1, 2, . . . , n) of the closed loop
observer (4) are distinct from those of the open loop plant system
(1).

A. Eigenstructure Parameterization

Derived from [1], [10], [13], [16], the parametric expression of the
gain matrix K can be expressed as:

Lemma 1: Let {A, C} be observable, then, for any group of
scalars λi, i = 1, 2, . . . , n under assumption A1, the gain matrix
K can always be parameterized as:

K = L−1Q (8)

where L ∈ R
n×n is composed of the left eigenrows li of A − KC,

corresponding to the eigenvalue λi respectively,

L =

⎡
⎢⎣

lT1
...

lTn

⎤
⎥⎦ =

⎡
⎢⎣

qT
1 C(A − λ1I)−1

...
qT

n C(A − λnI)−1

⎤
⎥⎦ (9)

and Q ∈ R
n×p is composed of the free parameter vectors qi

QT = [qT
1 qT

2 . . . qT
n ] (10)

Lemma 1 gives an explicit, parametric expression of K, with the
eigenvalues λi and the vectors qi as the free parameters. Except for
the assumption A1, there are two more constraints in Lemma 1:

Constraint C1 The set {λi} and the set {qi} of free parameter
vectors must be self-conjugated such that the resulting feedback
matrix K is a real coefficient matrix.

Constraint C2 In order that the vectors li are the closed-loop
eigenvectors, λi and qi must be chosen in such a way that li yields
linearly independent vectors. Then left eigenvector matrix K is non-
singular and the inverse K−1 exists.

As a result, the discrete TFMs Gf (z), Gd(z) can also be expressed
in a parametric form.

Lemma 2: Under the assumption A1 and constraints C1, C2, the
discrete transfer function matrices (7) can be expressed in terms of
the eigenstructure, respectively, as

Gd(z) = Dd + C [RΨ(z)L] (Bd − L−1QDd)

Gf (z) = Df + C [RΨ(z)L] (Bf − L−1QDf )
(11)

where
R = L−1 = (r1, r2, . . . , rn) (12)

and

Ψ(z) =

⎡
⎢⎣

1
z−λ1

0 . . . 0
...

...
. . .

...
0 0 . . . 1

z−λn

⎤
⎥⎦ (13)

Proof. Similar to the Lemma 10.2 in [10], by replacing the s-
transformation with the z-transformation, the inverse of any discrete
TFM (zI − A + KC)−1 can be expanded as

(zI − A + KC)−1 =
r1lT1
z−λ1

+
r2lT2
z−λ2

+ . . . +
rnlTn
z−λn

(14)

Substituting (14) into (7) gives the parametric expressiones of Gd(z)
and Gf (z). Rewriting it into matrix form, (11) is thus given. Proved.

It is worth to note that all the vectors li, ri (matrices L, R) depend
on the choice of λi and qi (i = 1, 2, . . . , n). λi can be arbitrarily
chosen from the fields C of real (or complex) numbers, and qi from
the real vector spaces R

p, respectively. The freedom allows to use
a lot of existing optimization algorithms to find the optimal gain
matrix K. Before optimization, an issue needed to be addressed is
the definition and evaluation of the robustness/sensitivity criteria and
related TFM-norms.

B. Performance Index Evaluation

One of widely accepted robustness/sensitivity criteria is the H∞-
norm based index: J∞/∞ = ‖Gd(z)‖∞

‖Gf (z)‖∞ , where H∞-norm is used to
measure the largest singular value of a TFM over the whole frequency
range. Minimizing J∞/∞ is to find a matrix K so that the fault
detection is optimal at the worst case. However the H∞ optimal
observer may be too conservative, because it only minimizes the peak
value to give the basic guarantee of system performance. A further
drawback is the computation complexity. H∞-norms are calculated
by gridding and integrating over the whole frequency range 0 ≤
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|ω| ≤ π, which introduce more computational burden and then is not
suitable for on-board fault detection of GTEs. In order to avoid these
drawbacks, a modified performance index is proposed as follows.

1) Robustness Index: Based on the observation that most dis-
turbances in GTE systems are frequency band limited, a modified
robustness index is proposed here through evaluating the TFM-norm
at the disturbance frequency point z = ejwd , in stead of the whole
frequency range:

min
Q,Λ

‖Gd(z)‖z=ejwd (15)

where the disturbance is assumed mainly concentrated at some
frequency wd, 0 ≤ |wd| ≤ π.

Similar to H∞ theory, here the disturbance and wd is still
unknown. The following theorem is used to solve the problem of
disturbance frequency estimation:

Theorem For a discrete system (1), under the assumption that the
disturbances is frequency band-limited, if the observer (5) is stable,
at steady state, the main spectrum set of residual, Ωr , is limited to a
portion of Ωd, the spectrum set of disturbance. That is Ωr ⊆ Ωd

The result of this theorem is standard when applied to univariate
system and the extension to multivariable system appears to be new.
It can be simply interpreted as: for an discrete-time observer, the
disturbance frequency wd of d(k) has not changes and then can be
identified from residual r(k).

It follows that, if the spectrum of residual mainly lies at frequency
wr , then (15) can be computed as

min
Q,Λ

J1 = ‖Gd(z)‖z=ejwr (16)

2) Sensitivity Index: Not like a random noise, a fault signal is
associated with some pattern and, from the viewpoint of frequency
domain, its distribution is not uniform over the whole frequency
range. For instance, an incipient fault comprises mainly low frequency
components. For abrupt faults, high frequency contents only exist at
the time instant when faults start, and it is almost constant (zero
frequency) content thereafter. For detecting these common faults
mainly on low frequency, the steady state gain is the most important
factor and Chen etc. [1] proposed strong fault detectability condition:
‖Gf (s)‖s=0 �= 0 in continuous time domain. In this paper, it
is proposed that the ‖Gf (z)‖z=1 index should be maximized for
increasing the fault significance, which gives

max
Q,Λ

J2 = ‖Gf (z)‖z=1 (17)

Generally, for a fault with main frequency components at frequency
wf and wf is known a priori, the sensitivity index can be defined as

max
Q,Λ

J2 = ‖Gf (z)‖
z=e

jwf (18)

Combining the robustness index (16) and sensitivity index (18)
leads to the performance index as:

min
Q,Λ

J =
J1

J2
=

‖Gd(z)‖z=ejwr

ρ + ‖Gf (z)‖
z=e

jwf

(19)

where ρ is a small positive real number. The aim is to avoid division
by zero when ‖Gf (ejwf )‖ is zero in some cases.

Remark 1: Since the variables z in (19) are given specific
values wr or wf , respectively, the computation of the TMF-norm is
converted into a numerical matrix norm calculation. Compared to the
H∞ TMF-norm, which requires griding, computing and finding the
largest singular value over the whole frequency [0, π], performance
index (19) only involves the computation of two real matrices. The
associated computation is very low. This benefit is paid by the
spectrum analysis which can be effectively carried out by using FFT.

Remark 2: It is worthy note that the spectrum set of residuals is
just a part of the spectrum set of disturbances. For some disturbance
ejω0k, if the magnitude ‖Gd(z)‖z=ejω0 = 0, then ω0 does not appear
in Ωr . It means the residual r(k) is not affected by the disturbance
d(k). Hence, it is not necessary to attenuate such a disturbance.

Remark 3: As the frequency information is incorporated into the
new index (19), the resulting observer is optimal for attenuating such
a certain disturbance. In most applications, such an observer has a
better disturbance attenuation performance.

Remark 4: Compared to FFT-based fault detection methods (e.g.,
MCAS in electrical motor condition monitoring), the advantage is
again the relatively low computation cost. In common FFT-based fault
detections, the FFT has to be repeated when new data arriving. In our
method, the FFT only performances once for disturbance estimation
at the observer design step. At the fault detection step, the observer
parameters keep unchanged and faults are detected in time domain
by comparing the observer outputs with actual outputs. Hence, a lot
of FFTs are avoided and the computation burden is relatively small.

C. Optimization of free parameters and eigenvalues

It can be seen from (11), the performance function J (19) is not
only a function of the free parameters {qi}, but also a function of
the eigenvalues {λi}. The values of {λi} not only determine the
stability, but also affect the performance index to a great extent. In
most papers, however, only {qi} are optimized and the eigenvalues
are given a prior. Those optimizations are more likely local optimal
[11].

An alternative way to improve the disturbance rejection perfor-
mance is to optimize both poles Λ and free parameters Q simulta-
neously. In this paper, no exact positions of poles are pre-specified,
whereas the regions where poles should lie in are specified according
to the stability and response speed requirement.

Based on the discussion above, the solution to the RFDO can now
be stated as the follows:

If assumption A1 and constraints C1, C2 are satisfied, and the
main frequency contents of residuals r(k) can be estimated at wr,
then minimizing the following performance index

J(Q, Λ) =

∣∣∣∣∣∣Dd + CRΨ(z)L(Bd − L−1QDd)

∣∣∣∣∣∣
z=ejwr

ρ +

∣∣∣∣∣∣Df + CRΨ(z)L(Bf − L−1QDf )

∣∣∣∣∣∣
z=e

jwf

(20)

gives the optimal gain matrix K = L−1Q such that the disturbance
d(k) is attenuated and the sensitiveness to faults is enhanced to the
greatest extent.

IV. APPLICATION AND RESULTS

To illustrate the proposed RFDO design approach, this section
presents results of an application to the detection of actuator faults
of a gas turbine engine. Real engine fuel flow data gathered from
normal engine closed-loop operation at the engine test-bed are used
[14].

In aero engines, the main characteristics are the dynamics between
the fuel flow and shaft speeds. The control system is usually orga-
nized as a dual-lane system with two sets of parallel sensors and
controllers [14]. A general scheme is presented in Fig. 1, where the
input is the flow rate Wf , the outputs are the low pressure shaft speed
Nlp and the high pressure shaft speed Nhp. The vectors Ys1, Ys2

denote the measurements of [Nlp, Nhp]T by the two set of sensors
respectively. Ys3 denotes the model prediction value of [N̂lp, N̂hp]

T .
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Ys1

Ys2

r(t)
Ys3

Fault Detection 
Unit

Actuator

disturbances

C2C1
Set 

Value

RFDO

Shaft
Speed

Wf +
-

Gas Turbine Engine Ys1(Ys2)

Dual-lane Controller

f

[Nhp,Nlp]
S1

S2

Fig. 1. Dual-lane control of gas turbine engines. Controller C1 and sensor
S1 compose the primary lane. Controller C2 and sensor S2 compose a spare
lane and is waiting in ”hot back-up.” When the primary lane fails, the spare
lane comes online immediately. The model works as the third virtual lane.

In this application, the detection of actuator faults is the focus
and both sensor sets are assumed fault-free. Generally, there are two
categories of actuator faults: abrupt faults and incipient faults. An
abrupt fault is that a machine breaks down without any warning of
impending failure(e.g., blocked filters/valves, sudden pipe leakage)
and an incipient fault is a gradual process with a deteriorating
fault condition (e.g. drift failure, deterioration of actuator, blade
containments). Particularly, the earlier detection of incipient faults
has a lot of benefits for reliable operation and reducing maintenance
costs.

A reduced order model of the GTE is identified by using the
method in [17] and expressed in the state space form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x1(k + 1)
x2(k + 1)

)
=

[
0.9769 0.0038
0.0936 0.9225

](
x1(k)
x2(k)

)

+

[
2.1521
8.8186

]
Wf (k)

(
Nhp(k)
Nlp(k)

)
=

[
1 0
0 1

](
x1(k)
x2(k)

)
(21)

with the sampling interval Ts = 0.025 second. It is easy to verify
that the system (21) is observable and the open-loop poles are
[0.9828, 0.9166]. The disturbance model is assumed as

Bd =

[
0.1510 0.0406
0.0500 0.0528

]
, Dd =

[
0 0
0 0

]
,

Bf = B =

[
2.1521
8.8186

]
, Df =

[
0
0

] (22)

where the fault matrix Bf = B for actuator fault. The disturbance
injected to the system is simulated by{

d1(k) = s1(k) + h(k) ∗ n1(k)
d2(k) = s2(k) + h(k) ∗ n2(k)

(23)

where [n1(k), n2(k)] are white noises with covariance matrix
[0.4 0; 0 0.04] and zero mean values. h(k) is a filter with pass

band of [1.5, π]. The deterministic signals are{
s1(k) = sin(2k) + cos(2.1k + π/4)+

0.5cos(2.3k) + 0.5sin(2.2k − π/4)
s2(k) = 0.5sin(2.1k) + 0.25sin(1.5k + π/4)

(24)

The injected disturbance is shown in Fig. 2 and its 128-point FFT
based spectrum is shown in Fig. 4(a).
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Fig. 2. Disturbances injected into the system
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Fig. 3. Experiment: the input Wf , the outputs of the shaft speeds
([Nlp, Nhp]T ) and their estimations [N̂lp, N̂hp]T predicted by the observer
K0. Since the model is identified at a steady operating point, the data used
here has been subtracted from the operating point equilibrium.

In order to estimate the disturbance frequency, a gain matrix K0

is first constructed via place(A’,C’,[0.5 0.5])’. The inputs, outputs
of observer K0 are shown in Fig.3. A 128-point FFT is employed
to calculate the spectrum of r(k), as shown in Fig. 4(b). Compared
to the spectrum of disturbances (Fig. 4(a)), r(k) is a band-limited
quasi-stationary signal and has main frequency components around
wd = 2.1.

The desired poles region are set as |λi| < 0.75, which is a round
centering at the origin. [−0.5 0.5] are set as the initial values of λi.
The initial value of Q are

Q =

(
q1

q2

)
=

(
0.5 0.1
1.0 0.0

)
(25)
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Fig. 4. (a) Disturbance spectrum and (b) its frequency estimation through
128-point FFT-based residuals spectrum analysis

It is easy to verify that the assumption A1 and constraints C1, C2
are satisfied. The value of ρ in (19) is set as 0.1.

Using fmincon provided by MATLAB Optimization Toolbox gives
the optimal gain matrix K

Kopt =

(
3.3769 −11.0584
0.9516 −2.8394

)
(26)

with optimal poles [0.6519, 0.7100] and J = 0.0005583. For
comparison, Kplace (by place command provided by MATLAB) and
Kinf (by H∞ method) are designed,

Kplace =

(
0.3250 0.0038

0.0936 0.2125

)
, Kinf =

(
0.2402 0.0549

0.0493 0.2973

)
(27)

where Kplace, Kinf have identical eigenvalues as Kopt.

A. Residuals without Faults

Fig. 5 shows the residuals ‖r(k)‖opt, ‖r(k)‖place, ‖r(k)‖inf

and their spectra, respectively. The disturbance attenuation of Kopt

is more apparent compared to that of Kplace, Kinf . In the time
domain, it can been seen that the maximum magnitude of ‖r(k)‖opt

is below than 3 in the steady state, however that of ‖r(k)‖place and
‖r(k)‖inf are nearly 4. In the frequency domain, the disturbance
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Fig. 5. Residuals ‖r(k)‖opt, ‖r(k)‖place and ‖r(k)‖inf corresponding
to Kopt Kplace, Kinf respectively in the fault free case (left column) and
their associated spectra (right column)

attenuation of Kopt is obviously better. Particularly, the residual
spectrum magnitude of observer Kopt at ωd = 2.1 is attenuated
to 20. The performance of disturbance attenuation is expressed by
the ratio of the power of d(k) and r(k) in decibel (dB), as shown

dB = 10 log10

‖R(jw)‖2

‖D(jw)‖2
(28)

At frequency 2.1, the disturbance is attenuated -8 dB by Kopt.
Whereas it is 0 dB in Kplace and Kinf .

The benefit of the smaller residual amplitude of ‖r(k)‖opt is that
Kopt is able to detect a smaller fault and to avoid false alarms.

B. Detection of actuator faults

Although many actuator faults lead to an abrupt changes, in
practice, actuator faults can also be caused by the components
degradation and behave as slow changes. Such faults are extremely
difficult to be detected immediately from a simple visual inspection
of the output signals. To simulate the incipient fault of the fuel
pump gain drift of 0.002 unit per second, the fault function f(t)
is represented as

f(t) =

{
0 (t � 10.05)
0.002(t − 10.05) (10.05 < t < 20.05)
0.008 (t � 20.05)

(29)

This is a typical saturated actuator fault caused by component
degradation. Fig. 6 shows the norms of the residual vectors. The
observers Kplace, Kinf fail to detect such a fault, as there is no
obvious changes in their residuals. However, ‖r(k)‖opt shows an
increase soon after the fault happening, and then follows the fault.
From the view point of fault detection delay, it is less than 5 second
after the fault happening when Kopt gives fault indication and no
false alarm thereafter. However, even 20 seconds later, both Kplace,
Kinf fail to detect the fault. This verifies that Kopt is able to detect
an incipient fault earlier and more distinctly.
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Fig. 6. Residuals of Kopt, Kplace and Kinf in the case of a saturated
incipient actuator fault.

V. CONCLUSION

In this paper, a robust fault detection observer has been de-
signed through FFT-based disturbance frequency estimation and left
eigenvector-based eigenvalue assignment. Compared to the existing
methods, the benefits of the proposed approach are two fold: First,
the computation costs is reduced, which makes this approach more
suitable for on-board condition monitoring of GTEs. By estimating
and integrating disturbance frequency information, ‖Gd(z)‖ and
‖Gf (z)‖ are evaluated at frequency z = ejwr , z = ejwf , respec-
tively. Thus, a numerical matrix norm is calculated, rather than the
time-consuming H∞-norm of transfer function matrix. Second, by
optimizing free parameters Q and eigenvalues {λi} simultaneously,
this technique is more likely to avoid a local minimal and able to
give better disturbance attenuation.

In the application to the actuator faults detection of a GTE, the
improvement on disturbance attenuation and fault detection has been
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demonstrated. Although this is designed for attenuating external
disturbances, the principles used here are applicable to the problem of
model uncertainty. Further study is needed to solve it. Finally, when
applying this method to real embedded systems, some issues (e.g.,
calculation accuracy, computation complexity) needs further study.
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